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Abstract. Various types of mixed-spin two-dimensional Heisenberg network are investigated
by means of Monte Carlo simulations. This study aims at interpreting quantitatively the
thermodynamical properties of two-dimensional molecule-based magnets that have been recently
synthesized. The proposed model requires that: (i) one of the two magnetic centres has a
spin large enough to be treated as a classical spin; (ii) the zero-field Hamiltonian is isotropic;
(iii) the quantum spins have only classical spins as neighbours. The quantum Hamiltonian is
then replaced by a classical one with effective ferromagnetic interactions. The temperature
dependence of both the specific heat and the magnetic susceptibility are calculated. The effects
of the lattice geometry are analysed. We obtain for the specific heat a typical curve which is
independent of these effects.

1. Introduction

A rather large number of molecule-based magnets have been synthesized and investigated
in the last few years [1, 2]. They correspond to low-dimensional magnetic systems,
either quasi-one-dimensional [3–8] or, more recently, quasi-two-dimensional ones [9, 10].
The one-dimensional compounds are well modelled as equally spaced magnetic chains,
alternating chains involving a unique kind of spin carrier, and two kinds of interaction
pathway: mixed-spin chains, ladder-type double chains, etc.

This paper is devoted to two-dimensional Heisenberg mixed-spin compounds in which
one of the spins is large enough to be treated as a classical spin and the other is normally
treated as a quantum spin. This work is motivated by the synthesis of novel two-dimensional
magnetic materials. So far, two types of two-dimensional magnetic lattice have been
described. Both have honeycomb-like structure. The former type is obtained using oxalate
as the bridging ligand. Mn2+ ions in octahedral surroundings are located at the corners
of the hexagons, and Cu2+ ions in elongated tetragonal surroundings are located at the
mid-points of the edges. A strong antiferromagnetic interaction is propagated between the
Mn2+ and Cu2+ ions through the oxalate bridge, so the intralayer interaction is very large
as compared to the interlayer interaction. In these compounds the layers are negatively
charged, and the nature and magnitude of the interlayer interaction is governed by the size
of the counter-cations situated between the layers. In the case of the NBu4+ counter-cation,
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a long-range magnetic transition was observed at 15 K, probably due to the synergy between
a very weak magnetic anisotropy and a ferromagnetic interlayer interaction [11]. It has been
shown in a previous paper [12] that our model leads to an excellent interpretation of the
magnetic properties of this material. The parameters found were as follows:J = 47.6 K,
gMn = 2.0, andgCu = 2.2. These values are very close to those obtained for both Cu2+Mn2+

pairs [3] and chains [7] involving the same bridge. The value of the interaction parameter
essentially depends on the nature of the bridging network, and is not very sensitive to the
spin geometry.

The latter type of lattice is realized in a series of two-dimensional oxalate-bridged
bimetallic compounds which have just been synthesized [10]. In such compounds, the
two kinds of magnetic ion alternate at the corners of the hexagons. The layers which are
again negatively charged are separated by counter-cations. The general formula of these
compounds is (NBu4)[M II RuIII (ox)3] where MII is either MnII (S = 5/2) or FeII (S = 2)
or CuII (S = 1/2), and the spin carried by the high-field Ru3+ ion is S(Ru) = 1/2. The
interaction is ferromagnetic for Mn and antiferromagnetic for Cu and Fe. In the latter case
a ferromagnetic transition occurs atTc = 13 K. We note that other compounds with the
same structure have been reported [13–16]. The nature of the spin carriers, however, is not
such as to allow one to use the classical–quantum spin approach.

The aim of this paper is to study the influence of the geometry of the spin lattice on
the thermodynamical properties of such systems. In this way, we derive from the mixed
quantum–classical Heisenberg model a purely classical one with an effective interaction
which depends on the lattice geometry. This model is analysed by means of Monte Carlo
(MC) simulations. We investigate the different realizations of the hexagonal lattice described
above, but also two configurations based on the square lattice.

The paper is organized as follows: the model is developed in the first section, then the
Monte Carlo analysis is presented, and the results are discussed in the last section.

2. The model

Let us write down the Heisenberg spin Hamiltonian as

H = J
∑
〈ij〉
S(Q)i · S

(C)
j − g1µBH

NC∑
j=1

S
z(C)
j − g2µBH

NQ∑
i=1

S
z(Q)
i .

HereS(C)j is the large-spin operator (5/2 for Mn, 2 for Fe) which will be approximated by
a classical vector,Ss, wheres is a unit vector and

S =
√
S(C)(S(C) + 1).

The 1
2-spin quantum operator (for Cu or Ru) is denoted byS(Q)i = 1

2σi with σi the Pauli
matrices. The interaction parameterJ is positive for an antiferromagnetic interaction (in
the following, we only consider this case);H is a weak magnetic field applied along the
z-direction. 〈ij〉 stands for a pair of nearest-neighbour spins,NC is the number of classical
spins, andNQ is the number of quantum spins.

Two kinds of magnetic lattice are investigated, the hexagonal one, which has been
realized experimentally, and the square one. For each lattice, the spins can be arranged in
two fashions: either the classical spins are attached at each vertex, and the quantum spins
occupy the middles of the links, or the classical and quantum spins alternate at the vertices
of the lattice. The structures are shown schematically in figures 1(a) to 1(d).
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Figure 1. On the left-hand side of (a)–(d): the original lattices, where the squares stand for
quantum spins, and the circles for classical spins. On the right-hand side of (a)–(d): the effective
lattice of classicalspins, with the unit cell bold.

In all cases, a quantum spin is surrounded only by classical ones. Therefore, the partition
function can be factorized with respect to the quantum spin operators:

Z(T ,H) =
∫ ( NC∏

j=1

d�j

)
Trσ

{NQ∏
i=1

exp

(
σi ·

[
−1

2
βJS

∑
j∈V (i)

sj + 1

2
βg2µBH êz

])}

× exp

(
βg1µBSH

NC∑
j=1

szj

)
.

In this expression,V (i) is the set of labels of the classical spins that are the nearest
neighbours of the quantum spin at sitei. Let us call this set of classical spins aunit
cell. Depending on the lattice, the unit cell is a link (lattices (a) and (c) of figure 1), a
triangular plaquette (lattice (d)), or a square plaquette (lattice (b)). Due to the factorized
form of Z(T ,H), the quantum spin dependence can be traced out to give a fully classical
partition function:

Z(T ,H) =
∫ ( Nc∏

j=1

d�j

){∏
{0}

2 cosh

∣∣∣∣∣∣∣∣− 1

2
βJS

∑
j∈0

sj + 1

2
βg2µBH êz

∣∣∣∣∣∣∣∣}

× exp

(
βg1µBSH

Nc∑
j=1

szj

)
(1)

where{0} is the set of unit cells on the lattice and||X|| stands for the length of vectorX.
The original mixed-spin system is then equivalent to a classical one with an effective

ferromagnetic interaction between the classical spins on the plaquettes{0} which becomes
(in zero field)

Heff = −kBT
∑
{0}

ln

(
2 cosh

∣∣∣∣∣∣∣∣K∑
j∈0

sj

∣∣∣∣∣∣∣∣).
In the following, we shall use the notation

K = 1

2

JS

kBT
W (0) =

∑
j∈0

sj W(0) = ||W (0)|| Wz(0) =W (0) · êz.
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The various observables, like the heat capacity

CV = kBβ2 ∂2

∂β2
lnZ(T , 0)

and the zero-field susceptibility

χ = kBT

V

∂2

∂H 2
lnZ

∣∣∣∣
H=0

are simple generalizations of the ones defined in reference [12], and can be expressed as
ensemble averages with respect to the Boltzmann weight e−βHeff/Z(T , 0). By defining

E = −1

2
JS

∑
{0}
W(0) tanh(KW(0))

we find that the internal energy and the specific heat are given by

U = 〈E〉Heff

CV = kBβ2[〈E2〉Heff − 〈E〉2Heff
] + kB〈8〉Heff with 8 =

∑
{0}

[
KW(0)

cosh(KW(0))

]2
. (2)

The molar magnetic susceptibility is obtained from equation (1):

χ = µ2
B

kBT NM

(
g2

1S
2〈P 〉Heff + Sg1g2〈Q〉Heff +

1

4
g2

2〈R〉Heff

)
(3)

whereNM is the number of molecules, andP , Q, andR have the following expressions†:

P =
( NC∑
i=1

szi

)2

Q =
( NC∑
i=1

szi

)(∑
{0}
s̄z(0)

)

R =
(∑
{0}
s̄z(0)

)2

−
∑
{0}
(s̄z(0))

2+
∑
{0}

(
(1− ρ2(0))

tanh(KW(0))

KW(0)
+ ρ2(0)

)
whereρ(0) = Wz(0)/W(0) and s̄z(0) = −ρ(0) tanh(KW(0)).

3. Monte Carlo simulations

These various thermodynamical quantities are determined by Monte Carlo sampling, with
respect to the Boltzmann weight e−βHeff/Z(T , 0). The simulations were first performed
using the Metropolis method [17]. This method has been proved to be very useful at high
temperature, far from the phase transition. However, it suffers from a severe slowing down
near the phase transition, and therefore becomes rather inefficient at low temperature, since,
for an isotropic two-dimensional system, the critical temperature isTC = 0 K [18]. A
cluster-flipping method developed by Wolff [19] drastically reduces the slowing down, and
the Wolff algorithm was used for high values ofK (i.e. low values ofT ). To overcome the
finite-size effects in the critical region, we increased the size of the systems asT decreased.
The number of cells was 214 for K < 2, and increased up to 216 for K = 5. Periodic

† The numerical values of〈P 〉Heff , 〈Q〉Heff , and〈R〉Heff as functions of the temperature for the four lattices can
be provided on request.
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boundary conditions were imposed on the system, and a random spin configuration was
taken as the initial spin configuration. The number of Metropolis steps necessary to reach
the thermal equilibrium was found to be between 102 and 104 lattice sweeps depending on
the temperature. The averaging of the various observables was stopped when1χ/χ < 0.01.
The relative uncertainty in the energy and the specific heat was then better than 10−2. These
calculations were performed on a Cray J916.
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Figure 2. χT (in units of cm3 K mol−1) as a function of temperature (in units ofJ ). The local
spins are assumed to beSC = S(Mn) = 5/2 andSQ = S(Cu) = 1/2, and the local Zeeman
factors are taken to beg1 = g2 = 2. The labels refer to the lattices of figure 1.

3.1. The magnetic susceptibility

Figure 2 shows the behaviour ofχT (in cm3 K mol−1) as a function of the temperature
(in units ofJ ) for the four lattice configurations. The four curves present the same general
trend, characterized by the following features:

(i) a constant value at high temperature corresponding to the paramagnetic limit;
(ii) a shallow minimum, characteristic of a ferrimagnetic system with antiferromagnetic

couplings; this is due to the local ordering appearing as the temperature is lowered, and
which causes a decrease of the local magnetization;

(iii) a rapid increase at low temperature due to the critical divergence atT = 0.

It is interesting to determine the extent to which all of these results can be described by
the same universal trend, simply corrected by the lattice effects. In fact, at high temperature,
the susceptibility is given by the Curie constant, which depends in a simple way on the spin
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arrangement:

(χT )T=∞ = µ2
B

3kB

[
35

4
nCg

2
1 +

3

4
nQg

2
2

]
(4)

wherenQ andnC are the numbers of low-spin (quantum) and high-spin (classical) ions per
molecule, respectively (these numbers are given in table 1 for each lattice). In equation (4)
we have takenS(Q) = 1/2, S(C) = S(Mn) = 5/2. For the curves of figure 2 we set
g1 = g2 = 2.

Table 1. nQ (nC ) is the number of quantum (classical) spins per molecule.T
χ
m is the temperature

(in units of J ) at which the minimum ofχT occurs: (MC) (column 4) from the Monte Carlo
data, and (MF) (column 5) from the mean-field theory.̃J is the effective coupling of the
non-linear sigma model deduced from the low-temperature limit of the lattice model.

Network nQ nC T
χ
m (MC) T

χ
m (MF) J̃

(a) 2 1 3± 0.5 5.83 1
4JS

(b) 1
2

1
2 7.4± 1 11.7 1

2JS

(c) 3 2 3± 0.1 5.83 JS/4
√

3

(d) 1 1 6± 1 8.78 JS/2
√

3

The temperature at which the minimum occurs is determined from the Monte Carlo
data. We present the results in table 1 (column 4) for each lattice. We have computed this
quantity within the mean-field theory, and we found the surprisingly simple result

T χm (MF) = 1

3
JS2n

wheren is the number of classical spins in a unit cell (or equivalently the number of classical
neighbours of a quantum spin). These values are presented in the fifth column of table 1.
Although the mean-field and Monte Carlo results are quantitatively different, one can see
from table 1 that the relative positions of the minima with respect to the lattice are the same
for the two results. This is an indication that the parametern is probably relevant to this
quantity.

At low temperature, the critical divergence is described by the non-linear sigma model.
The mapping between the discrete model on a specific lattice and the universal field theory
can be established as follows. First, take the low-temperature spin-wave limit of the lattice
model:

Heff(J ) −→ HSW(J
∗) = −1

2
J ∗
∑
〈ij〉

θ2
ij .

Then take the long-wavelength limit in order to go to the continuum model:

HSW(J
∗) −→ Hσ (J̃ ) = 1

2
J̃

∫
d2r

∑
µ

∂µn(r) · ∂µn(r). (5)

The first step depends on the effective interaction between the classical spins whereas the
second is related to the geometry of the classical spin lattice. The expression forJ̃ is given
in table 1 for each lattice model. As a consequence, we expect a universal behaviour of the
low-temperature regime for all of the lattices, provided that the temperature is renormalized
in such a way that̃T = T/J̃ . We do not observe this behaviourquantitativelyin our Monte



The thermodynamical properties of 2D spin systems 5193

Carlo data, since our lowest temperatures do not lie within the universal critical regime†.
However, the hierarchy of thẽJ -values gives the relative positions of the critical increases
of χT for each lattice fairly well qualitatively.

K

0.0 1.0 2.0 3.0 4.0 5.0 

c V
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Figure 3. The specific heatcV = CV /(NCkB) versusK = JS/(2kBT ) for the four lattices.

Table 2. Coefficients of the high-temperature expansion forcV for the four lattices.

Lattice a2 a4 a6

(a) 4 − 20
3 8

(b) 4 −4 − 152
9

(c) 3 −5 6

(d) 3 −7 140
9

3.2. The specific heat

The specific heat is plotted as a function ofK in figure 3 for the four types of lattice. In
all cases, it presents a well pronounced maximum. In addition to this common trend, the
dependence on the lattice geometry of the details of these curves can be understood from
simple arguments. TheT = 0 (large-K) limiting value can be obtained from the spin-wave
contribution to the Hamiltonian of equation (5), which gives an energyper classical spinof

E ≈ E0+ kBT .
† We noticed in reference [12] that this behaviour is observed for lattice (c) forK & 2.5 which corresponds to
T . 0.59J .
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Figure 4. As figure 3, but in the high-temperature regime. The data points correspond to the
Monte Carlo results and the lines to the low-order high-temperature expansion.

Therefore, by normalizing the heat capacity with respect to the number of classical spins,
we get, forT = 0, cV = CV /NCkB = 1 as can be seen in figure 3 from the result of the
simulation†. For largeT (smallK), the behaviour of the specific heat can be inferred from
the high-temperature expansion. The first few terms of this expansion can be derived easily,
and we get

cV = a2K
2+ a4K

4+ a6K
6+ · · ·

wherea2 turns out to be the number of unit cells connected to a single (classical) site. This
number and the coefficientsa4 and a6 are given in table 2 for each lattice. The result,
presented in figure 4 in comparison with the Monte Carlo data, shows that, up toK ' 0.4,
the system is driven by its high-temperature behaviour.

The behaviour at intermediate and low temperature depends on the superposition of two
contributions, similarly to the case of lattice (c) already analysed in reference [12], where
this effect is clearly visible.

(i) A bump for K ≈ 1–2 resulting from the local ordering of the quantum spins with
respect to their randomly distributed classical neighbours. By neglecting the correlations
between the classical spins, we can estimate this contribution

C
Q
V ' NQkBK2

∫ ∏
i∈0

d�i
4π

W 2(0)

cosh2(KW(0))
. (6)

† A non-zero value of the specific heat at zero temperature reminds us of the approximation of 5/2 quantum spins
by classical spins.
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Figure 5. The specific heat subtracted from the quantum spin contribution as a function of the
lattice-renormalized coupling̃K = J̃ /JK (see table 1).

(ii) A low-temperature behaviour, described by the universal limit of the model
(equation (5)), provided that the temperature is renormalized by the factor defined in the
preceding section.

Accordingly, by subtracting the specific quantum contribution given by equation (6) and
renormalizing the temperature dependence of the residual specific heat, we expect to single
out a typical curve, free of geometrical effects. This is what we can observe in figure 5,
where the dependence of the lattice has been washed out by comparison with figure 3.
The bump seen on this curve is already present in the specific heat of the standard 2D
classical Heisenberg model, but we have no convincing explanation of its origin. It would
be interesting to obtain experimental confirmation of this effect.

4. Conclusion

In this paper we have determined the effect of the topology of the spin lattice on the
thermodynamical properties of two-dimensional systems with alternating quantum–classical
spins, modelling a wide family of magnetic molecular compounds. Since the quantum
spin dependence can be traced out, we can use the very powerfulclassical Monte Carlo
techniques to analyse these systems.

We found that the temperature dependences of both the magnetic susceptibility and the
specific heat can be described on the grounds of general behaviours in which the lattice
influence is explicit. Thus we are able to obtain a typical function for the specific heat, which
is independent of the lattice geometry. This analysis allows one to predict, in principle, what
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the specific heat and the magnetic susceptibility would be for other compounds with different
spin geometries. Alternatively, it can be used to determine the interaction parameters
together with the Zeeman factors from experimental data [10].

In most cases [3], one observes experimentally at low temperature (typically 10 to
15 K) a transition towards a ferromagnetic ordered phase which cannot be accommodated
within our isotropic interaction [18]. Therefore, the present analysis is only valid in the
paramagnetic phase. At low temperature, spin anisotropy [11] and/or spatial anisotropy
must be taken into account to explain this ferromagnetic phase transition.
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